
Anomaly-based Intrusion Detection in Software as a Service

Gustavo Nascimento∗, Miguel Correia†
∗Portugal Telecom – Portugal

†Instituto Superior Técnico / INESC-ID – Portugal
gustavo-nascimento@telecom.pt, miguel.p.correia@ist.utl.pt

Abstract—Anomaly-based intrusion detection systems (IDS)
have the ability of detecting previously unknown attacks, which
is important since new vulnerabilities and attacks are constantly
appearing. Software as a service web applications are currently
much targeted by attacks, so they are an obvious application
for such IDSs. The paper presents a study of the use of
anomaly-based IDSs with data from a production environment
hosting a web application of large dimensions. It describes
how challenges like processing a large number of requests and
obtaining training data without attacks were solved. It also
presents an evaluation comparing the accuracy obtained with
the different types of models that were used to represent normal
behavior.

I. INTRODUCTION

Intrusion detection is the process of identifying malicious
activity targeted at computing and networking resources [1].
An intrusion detection system (IDS) monitors computers
and/or networks to identify suspicious activity. When such
an event is detected, the IDS typically raises an alert. IDSs
have been classified as signature-based and anomaly-based.
A signature-based (or misuse-based) IDS has a database of
attack signatures and works similarly to anti-virus software,
by raising an alert when it matches one of the signatures.
Those signatures typically address widely used systems or
applications for which security vulnerabilities are known.
Nevertheless, similarly to anti-virus software that fails to
identify viruses when there is no signature available or the
virus database is out of date, a signature-based IDS also fails
to detect unknown attacks.

To overcome this limitation of signature-based IDSs,
researchers have sought other ways to detect intrusions.
An anomaly-based IDS works by first building a statistical
model of usage patterns describing the normal behavior of
the monitored resource. After this initial training phase,
the system uses a similarity metric to compare new input
requests with the model, and generates alerts for those de-
viating significantly, considering them anomalous. Basically,
attacks are detected because they produce a different, i.e.,
anomalous, behavior than what was observed when creating
the model. The main advantage of an anomaly-based system
is its ability to detect previously unknown (or variants
of known) attacks when they appear. Nevertheless, these
systems typically suffer from high rates of false positives and
can be evaded using mimicry attacks, i.e., attempts to pass

as normal behavior, for example by using byte substitution
and/or padding techniques.

The popularity of web applications, now often designated
as software as a service (SaaS) when offered by a provider
to a set of users, has caught the attention of attackers which
try to exploit their vulnerabilities. For example, in a recent
survey, 95% of the respondent organizations reported having
experienced more than 10 incidents related to their web
sites [5]. Therefore, using intrusion detection and specifi-
cally anomaly-based intrusion detection is important in such
systems. Several anomaly-based IDSs for web applications
have already been proposed in the literature [2], [9], [10],
[16], [13], [15], [8], [6].

The main goal of our research was to study the use of
anomaly-based IDS with data of a production environment
hosting a SaaS application of large dimensions, with more
than 500,000 requests a day. This poses interesting chal-
lenges, like processing of a large number of requests and
obtaining training data without attacks. In the literature,
anomaly-based IDSs have been tested almost only with
simple web applications.

The main contribution of the paper are insights on how
to deal with these challenges. The paper first explains how
a large collection of requests (14 weeks) was obtained and
how part of it was sanitized in order to serve as training
data. Then it presents the IDS and the types of models that
it supports. The important problem of generalization, i.e., of
obtaining models that are more general than the data used to
create them, is discussed. Finally, the paper summarizes the
evaluation we did of the IDS, mostly comparing the models
in order to reach conclusions about which one provides better
detection.

II. RELATED WORK

Several anomaly-based detection techniques for web
servers and web applications have been proposed in the last
decade. All these techniques were based on HTTP, in the
sense that the modeling of normal activity and the detection
are done by inspecting HTTP messages.

Anomaly-based detectors for web applications were first
proposed in [2], that describes a system which uses Bayesian
parameter estimation to analyze web access logs and detect
anomalous sessions. Their technique assumed that malicious
activity expressed itself in the parameters of HTTP requests,

essentially in the URL, which is also what is assumed by
most work that followed in the area.

Kruegel et al. proposed a number of similar techniques [9],
[10]. These techniques basically consisted of a combination
of different detection models: attribute length, attribute char-
acter distribution, structural inference, token finding, attribute
presence or absence, and attribute order. In this paper we use
the models of [9] along with some others.

Wang and Stolfo [16] proposed a system that uses the
Mahalanobis distance to detect anomalous requests in data
sets with multiple attributes, scaling each variable based on
its standard deviation and covariance and taking into account
how the measured attributes change in relation to each other.

The approach by Robertson et al. [13] uses heuristics to
infer the class of web-based attack. It attempts to address
the limitations of anomaly-based intrusion detection systems
by using both generalization and characterization techniques.
By using generalization, a more abstract description of an
anomaly can be created which enables one to group similar
attacks. As for characterization, it is used to infer the class
of attack that is associated with a group of anomalies.

Wang et al. [15], propose a content anomaly detector
based in n-gram analysis, which uses bloom filters and offers
resistance to mimicry and polymorphic attacks.

Ingham and Inoue presented a thorough study and com-
parison of existent anomaly detection methods for HTTP in-
trusion detection [7], [6]. They suggested two new grammar-
based anomaly detection models, DFA and n-grams, de-
scribed a framework for testing anomaly detection algorithms
and presented their findings using data from four different
web sites.

This paper uses several of the anomaly-based intrusion
detection techniques previously proposed in [7], [6], [9],
[16]. However, it aims to present an IDS for a real reasonably
complex web application, so not only we implemented sev-
eral of their techniques, but studied the problem of obtaining
good training data and had to deal with several practical
issues not considered in these previous works.

III. OBTAINING THE TRAFFIC DATA SETS

The SaaS considered is a popular web application of one
of the main Portuguese ISPs, with an average of more than
500,000 requests per day. This application allows users to
insert and consult information and pictures about products
they want to sell. Most requests are HTTP GETs. Our main
restriction was to consider only HTTP GET requests, thus
disregarding other requests (mostly POST) and all replies.
Replies are not particularly useful for this kind of detection,
while requests with POST and other methods accounted just
for a very small percentage of the traffic.

A. Initial data extraction

Our data sets were built from a series of network captures
of HTTP requests made to this application during a period

of 14 weeks. To collect these requests, the web server traffic
was port mirrored to a server where it was captured with
TShark. This tool, a terminal-based version of Wireshark 1, is
a network packet analyzer that enables capturing packet data
from a live network, or reading packets from a previously
saved capture file, either printing a decoded form of those
packets to the standard output or writing the packets to
a file. Its native capture file format is the one used by
libpcap/tcpdump 2.

When we began this research, we did not use any particu-
lar filters with TShark. However, and due to the high volume
of traffic, associated with the disk space limitations on our
capture server, we soon realized that we needed to restrict
what was being captured, as the early traces averaged about 8
GB with bzip2 best compression (-9) per day, which meant
around twice the size uncompressed, i.e., 16 GB of daily
traffic.

We began by transforming the trace logs into the Common
Log Format [11], the format typically used by web servers
and used by several of the IDSs mentioned in Section II.
For each request, the log entry contained the source IP, the
method (GET), the resource requests, a timestamp and a
few other data items less relevant for an IDS. Given that
the captures obtained with TShark contained the complete
requests, and since we deemed the header of the HTTP GET
requests to be useful for intrusion detection, we decided
to discard those logs and instead produce our data sets
differently. These sets were created by using snort [14]. This
program was not used as an IDS, but instead to reassemble
the TCP streams and extract the application-level, i.e., the
complete HTTP requests. This allowed our IDS to use the
HTTP header lines to test for attacks not contained in the
requested resource path. We decided to aggregate the output
streams processed by snort into weekly data sets.

B. Unfiltered and filtered data sets

We produced two different data sets. The first one con-
tained all the requests resulting from the captures done with
TShark after being processed by snort and parsed by custom
scripts to remove incomplete requests. We did not verify this
data set for attacks, so we refer it as the unfiltered data set.

The second data set – the filtered data set – contained
much less data. First, it was obtained by selecting the five
most accessed sub-applications of the original application
and by applying filters to match only the requests directed at
those applications. Second, it was filtered to remove attacks,
so that it could serve as training data. We selected n = 4
different weeks of traffic, each one from a different month,
and generated four data slots Slot[0..n − 1] to which we
applied the algorithm of Figure 1 in order to obtain sanitized
data. The slot sets were passed to the sanitization algorithm
in order to remove attacks, until the number of detected

1www.wireshark.org
2www.tcpdump.org

INITIALIZATION

∀ i ∈ {0, .., n− 1} , NonAttacks[i] = Attacks[i] = {}

SANITIZE-DATASET(n, Slot)

1 i← 0
2 repeat
3 TRAIN using Slot[i mod n]\Attacks[i mod n]
4 DETECT over Slot[(i+ 1) mod n]\NonAttacks[(i+ 1) mod n]
5 for all requests r detected as anomalous do
6 if manual analysis shows that r is an attack then
7 Attack[(i+ 1) mod n]← r
8 else
9 NonAttacks[(i+ 1) mod n]← r

10 i← i+ 1
11 until #attacks detected in last n rounds were less than threshold
12 return ∪Slot[0..n− 1]\ ∪Attacks[0..n− 1]

Figure 1. Algorithm used to obtain a data set without attacks

Data set Unfiltered size Filtered size
2010-07-12∗ 729058 42659
2010-07-19 751170 38682
2010-07-26 805296 37017
2010-08-02 549256 41598
2010-08-09 630795 40020
2010-08-16∗ 555708 48533
2010-08-23 583201 47086
2010-08-30 538670 42552
2010-09-06 615254 43922
2010-09-12 572264 53634
2010-09-20∗ 661150 53766
2010-09-27 681352 38851
2010-10-04 608760 43145
2010-10-11∗ 657060 39607

Table I
THE WEB SERVER DATA SET SIZES (IN NUMBER OF REQUESTS).

anomalies dropped below a certain threshold. Defining the
threshold depends on the environment and data in question,
but this algorithm can also easily be adapted to perform the
sanitization using a fixed number of iterations (simply by
changing the until condition).

Table I shows the number of HTTP GET requests in each
of the weekly unfiltered and filtered data sets. The four rows
marked with a ∗ represent the portion of data that was used
to train the anomaly detection models. The remaining rows
of the filtered column, represent the traffic that was used as
input for testing the IDS.

C. Attack data set

In order to test the detection capabilities of each model,
we produced another data set, consisting solely of HTTP
attack requests, using the compilation from [7]3. This com-
pilation consists of 63 attacks from different sources: the
BugTraq/SecurityFocus archives, the Open Source Vulnera-
bility Database, the Packetstorm archives, and Sourcebank. It
contains the following categories of attacks: buffer overflow,
input validation error (other than buffer overflow), signed
interpretation of unsigned value, and URL decoding error.

3Available at http://www.i-pi.com/HTTP-attacks-JoCN-2006.

IV. IDS AND NORMAL TRAFFIC MODELS

The IDS prototype does essentially two things: training
and detection. During the training phase, it determines the
characteristics of requests and creates a statistical model
describing normal behavior. In the detection phase, requests
are tested against the model in order to determine the
likelihood of them being attacks. In this phase, the system
tests a request and returns a similarity value, s ∈ [0, 1], which
represents the similarity of the request being tested to what
is expected from the trained model. Values of s = 0 indicate
a request that was not observed nor derived from the training
data. s = 1 indicates a request seen during training.

Both the training and detection logic were implemented
by us. However, the construction of the models and verifi-
cation of deviations were done using IDS::Test, an IDS test
framework developed by K. Ingham [8]4.

A. Models

The IDS::Test framework supports several types of mod-
els, from which we used nine: length, Mahalanobis distance,
χ2 of idealized character distribution, ordering of parameters,
presence or absence of parameters, token-finder, Markov
model, combination, and N-grams. The IDS uses any of
the types of models individually or a combination of the
6 models used by Kruegel and Vigna [9]. We do not have
space to present all these models, so we present only those
that provided better results.

The length of an attribute often can be used to detect
anomalous requests [9]. Since parameters are usually ei-
ther fixed-size tokens or short strings obtained from user
input, the length of parameter values should not vary much
between requests for the same web application. However,
when malicious input is passed to the web application
inside parameters, the length of the values is likely to be
different from that of normal requests. Length models aim at
approximating the parameter lengths and detecting instances
that significantly deviate from the observed normal behavior.
During the training phase, the mean and the variance of
attribute length strings are measured. As for the detection
phase, using Chebyshev’s inequality, the system calculates
the probability that an attribute would have the observed
length.

The Mahalanobis distance is a standard distance metric
used to compare two statistical distributions, which provides
a useful way to measure the similarity between the (un-
known) new payload sample and the previously computed
model. Wang and Stolfo [16] computed the distance between
the byte distributions of the newly observed payload against
the profile from the model computed for the corresponding
length range. The higher the distance score, the more likely
the payload is abnormal. We implemented this model fol-
lowing [16] and [6].

4Available from CPAN at http://search.cpan.org/˜ingham/IDS-Test-1.00/

An n-gram [3] is a substring of a string that we get by
sliding a window of length n across text. For example, given
the text abcdef and n = 4, the resulting 4-grams are: abcd,
bcde, cdef. In order to build a n-gram set, it is necessary to
break every string into n-grams and store every new n-gram
into the set. The detection phase for this model simply checks
if the n-grams in question were observed during training, that
is, if they are present in the set of n-grams learned from the
training data.

B. Generalization

In the training phase, to achieve more than simply mem-
orizing the training data, an anomaly-based IDS has to
generalize, i.e., to model the data set in a way that is more
generic that the specific behaviors in the data set itself. By
generalizing, an anomaly-based IDS accepts input similar,
but not necessarily identical to that of the training data set,
which implies the set of instances considered normal will
encompass a larger set than those in the training data. An
anomaly detection system that under-generalizes generates
too many false positives, while one that over-generalizes can
miss attacks. Therefore, correct generalization is a necessary
condition for the accuracy of an anomaly-based IDS.

Several heuristics were employed in the detection system
in order to increase the generalization for specific areas
in the request. After analyzing our data sets we assessed
which areas of an HTTP request were plausible for applying
generalization, and then decided to use several heuristics. We
can not present them all for lack of space, but some examples
follow. (1) Instead of learning every IP address and hostname
in the Internet, the system validates whether the form of the
IP address or the hostname meets the Internet standard. (2)
HTTP headers contain hashes, for example, as entity tags or
sessions IDs in cookies (e.g., Content-MD5 or PHPSESSID);
since the purpose of a hash is to be unique, it does not make
sense for an anomaly-based IDS to learn every hash, so the
system just validates the form (character set and length) of
the hash and returns if the hash is valid or not. (3) Dates can
be a problem for an IDS trying to learn the structure of an
HTTP request, as they change every day. Thus, the system
simply validates whether the date in question meets the RFC
2616.

V. EVALUATION

A. Space requirements

One of the requirements for an IDS is that is causes a
small overhead in the system it monitors. One metric of
such overhead is the amount of memory required to store the
model. Table II presents a comparison of size of the models
in bytes, when trained with the filtered and the unfiltered data
sets. The n-grams are the models which require more space,
with the 7-grams requiring 27MB when trained with the
filtered data set, and 93MB when trained with the unfiltered
data set. As for the remaining algorithms, the Markov model

Model Filtered data set Unfiltered data set
3-grams 4,306,864 13,277,971
4-grams 8,053,974 25,294,592
5-grams 13,344,542 42,723,133
6-grams 20,097,675 66,762,546
7-grams 28,293,212 96,863,131
Token 2,164 2,609
Combination 41,004 220,444
χ2ICD 3,327 3,350
Length 198 200
Mahalanobis distance 7,896 8,198
Markov model 1,915,325 6,011,577
Order 61,124 144,317

Table II
SIZE OF EACH MODEL TRAINED WITH THE FILTERED AND UNFILTERED

DATA SETS (IN BYTES).

is the one that takes more space, 1.9MB with the filtered data
set and 6MB with the unfiltered data set. The other models
all take little space.

B. Quality of the IDS

In this section, we evaluate the quality of the IDSs based
on the different models by using ROC curves.

When an IDS generates an intrusion alert for a request,
this is a positive. If the alert refers to a real intrusion attempt,
then it is a true positive, otherwise it is a false positive. On
the other hand, if the IDS does not generate an alert, this
is called a negative. If the IDS is right about it, the alert
is a true negative, otherwise it is a false negative. The true
positive rate (TPR) or detection rate of an IDS measures the
amount of malicious events correctly classified and reported
as alerts. It is given by TPR = TP/(TP + FN), where
TP is the number of true positives and FN is the number of
false negatives. The perfect IDS has TPR = 1. The false
positive rate measures the amount of legitimate events that
are incorrectly classified and reported as alerts and is given
by FPR = FP/(FP + TN), where FP is the number of
false positives and TN is the number of true negatives.

Receiver Operating Characteristic (ROC) curves are often
used to evaluate the quality of an IDS [12], [4]. The purpose
of a ROC curve is to depict graphically the accuracy of a
detector of some kind. The ROC curve for an IDS is basically
a plot between the FPR and the TPR rates as the threshold
value is varied, in order to show the tradeoff between them.
It is obtained by tuning the IDS to tradeoff false positives
against true positives, i.e., each point of the ROC curve
corresponds to a fixed amount of TPR and FPR calculated
under certain sensitivity parameters (threshold).

To produce the ROC plots, first we ran the IDS in detection
mode using as input a set of data that contained only
legitimate (normal) requests, and from there we obtained the
FPR. Then another set of data, that we knew to contain only
attack requests, was used as input for running the IDS in
detection mode, and from there we obtained the TPR.

We do not present all the ROCs due to lack of space, only
those of the models that provided the best results and one

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
 P

o
s
it
iv

e
 r

a
te

False Positive rate

ROC Curve for Length

filtered
unfiltered

Figure 2. ROC curves illustrating the accuracy of the Length model on
the filtered and unfiltered data sets.

containing all curves.
1) Length: The results for the Length model are presented

in Figure 2. When trained with the filtered data set, the
detection accuracy for the Length model was considerably
worse than when trained with the unfiltered data set, but in
either case, it was always below 80%. Regardless, we have
observed that using the Length model alone, particularly with
a full HTTP request containing headers has some limitations
as there are many headers that can influence the final lengths
of the request. We were able to improve the accuracy of the
Length model with the generalization heuristics mentioned
in Section IV-B.

2) Mahalanobis Distance: Figure 3 shows the results of
testing the Mahalanobis distance model. As expected, when
trained with the filtered data set, this model provided more
accurate results than when trained with the unfiltered data
set, which was exactly what we aimed for when performing
the filtering techniques described earlier. Nevertheless, the
best this model could perform was around a 90% true
positive rate while maintaining a false positive rate under
10%, which in our opinion is still not sufficient for a
production environment.

3) N-grams: Figures 4 and 5 show the results of testing
the n-grams model for n = 3, 7. Note the range of the x-axis,
i.e., the scale of the FPR, has been changed from 10% to
1%, in order to better visualize the plots. This makes little
difference in terms of comparison with the remaining models
as all n-gram variations achieve a true positive rate of 100%
before the false positive rate reaches 1%.

Against our expectations, for all the n-grams variations,
the detection was more accurate when the unfiltered data set
was used for training, rather than when the filtered data set
was used, despite the differences being almost insignificant
to even mention. The 3-grams model was also the most
accurate model when it came to testing, but in general, for
any of the five different n-grams models that were used, the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
 P

o
s
it
iv

e
 r

a
te

False Positive rate

ROC Curve for Mahalanobis distance

filtered

unfiltered

Figure 3. ROC curves illustrating the accuracy of the Mahalanobis distance
model on the filtered and unfiltered data sets.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.002 0.004 0.006 0.008 0.01

T
ru

e
 P

o
s
it
iv

e
 r

a
te

False Positive rate

ROC Curve for 3-grams

filtered
unfiltered

Figure 4. ROC curves illustrating the accuracy of 3-grams on the filtered
and unfiltered data sets.

detection rate was always very high and the false positive
rate almost nonexistent. However, it was surprising that the
smaller the n, the better this model performed. The reason for
this lies in the fact that most malicious parameters involve
rarely seen characters rather than a different combination
of usually seen characters, which can also explain why it
drastically outperforms the Length model.

In our experiments, n-gram modeling of web requests
shown to be a very promising and accurate model to detect
attacks, with a very high detection rate and very low false
positive rate. Clearly, this was the most appropriate model
for detecting attacks with the real-world data we used to
build our models and train our system.

4) Model comparison: Ordering models by accuracy de-
pends on the acceptable false positive rate, but in generally
the ROC curves of the models are well-separated throughout
the graph. In order to depict the difference in terms of accu-
racy between the models, Figure 6 presents a comparison be-
tween the 3-grams, 7-grams, Mahalanobis distance, Length,

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.002 0.004 0.006 0.008 0.01

T
ru

e
 P

o
s
it
iv

e
 r

a
te

False Positive rate

ROC Curve for 7-grams

filtered
unfiltered

Figure 5. ROC curves illustrating the accuracy of 7-grams on the filtered
and unfiltered data sets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
 P

o
s
it
iv

e
 r

a
te

False Positive rate

ROC Curves Comparison on filtered dataset

3-gram
7-gram

Mahalanobis distance
Length

Combination
Chi-squared distance

Figure 6. ROC curves comparing the accuracy of the 3-grams, 7-grams,
Mahalanobis distance, Length, Combination and χ2 distance when trained
with the filtered data set.

Combination and χ2 distance, when using the filtered data
set to construct the models. The n-grams models are clearly
the ones that show the highest true positive and lowest false
positive rates. For the remaining models, the Mahalanobis
distance is the one that performs better, followed by the
Length. There is however a considerable gap between the
n-grams and Mahalanobis distance and the remaining ones,
Length, χ2 distance and Combination.

VI. CONCLUSION

Anomaly-based intrusion detection is a promising tech-
nique since it allows detecting previously unknown attacks,
which is important as new vulnerabilities and attacks are con-
stantly appearing. The paper presented a study of anomaly-
based intrusion detection with a large SaaS application. It
presents how data was obtained and sanitized. A comparison
of the several models that can be used to represent normal
behavior has shown that n-grams provide the best accuracy,
with a high detection rate and a low false positive rate.

ACKNOWLEDGMENTS
This work was partially supported by Fundacão para a Ciência e a

Tecnologia through project RC-Clouds (PCT/EIA-EIA/115211/2009) and
the Multiannual and CMU-Portugal Programmes. This work was done while
the authors were with the Universidade de Lisboa, Faculdade de Ciências
and the Carnegie Mellon University Information Networking Institute.

REFERENCES

[1] E. G. Amoroso. Intrusion Detection. Intrusion.Net Books,
1999.

[2] S. Cho and S. Cha. SAD: web session anomaly detection
based on parameter estimation. Computers & Security,
23(4):312–319, 2004.

[3] M. Damashek. Gauging similarity with n-grams: Language-
independent categorization of text. Science, 267(5199):843–
848, 1995.

[4] T. Fawcett. An introduction to ROC analysis. Pattern
Recognition Letters, 27(8):861–874, 2006.

[5] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson.
CSI/FBI computer crime and security survey. Computer
Security Institute, 25, 2005.

[6] K. L. Ingham. Anomaly detection for HTTP intrusion detec-
tion: algorithm comparisons and the effect of generalization
on accuracy. PhD thesis, University of New Mexico, 2007.

[7] K. L. Ingham and H. Inoue. Comparing anomaly detection
techniques for HTTP. In Proceedings of the 10th International
Conference on Recent Advances in Intrusion Detection, pages
42–62. Springer, 2007.

[8] K. L. Ingham, A. Somayaji, J. Burge, and S. Forrest. Learning
DFA representations of HTTP for protecting web applications.
Computer Networks, 51(5):1239–1255, 2007.

[9] C. Kruegel and G. Vigna. Anomaly detection of web-
based attacks. In Proceedings of the 10th ACM Conference
on Computer and Communications Security, pages 251–261,
2003.

[10] C. Kruegel, G. Vigna, and W. Robertson. A multi-model
approach to the detection of web-based attacks. Computer
Networks, 48(5):717–738, 2005.

[11] A. Luotonen. The common log file format. http://www.w3.org
/pub/www/, 1995.

[12] R. A. Maxion and R. R. Roberts. Proper use of ROC curves
in intrusion/anomaly detection. Technical Report CS-TR-871,
Newcastle University, 2004.

[13] W. Robertson, G. Vigna, C. Kruegel, R.A. Kemmerer, et al.
Using generalization and characterization techniques in the
anomaly-based detection of web attacks. In Proceedings of the
13th Symposium on Network and Distributed System Security,
February 2006.

[14] M. Roesch et al. Snort-lightweight intrusion detection for
networks. In Proceedings of the 13th USENIX Conference on
System Administration, pages 229–238, November 1999.

[15] K. Wang, J. Parekh, and S. Stolfo. Anagram: A content
anomaly detector resistant to mimicry attack. In Proceedings
of the 9th International Conference on Recent Advances in
Intrusion Detection, pages 226–248. Springer, 2006.

[16] K. Wang and S.J. Stolfo. Anomalous payload-based network
intrusion detection. In Proceedings of the 7th International
Conference on Recent Advances in Intrusion Detection, pages
203–222. Springer, 2004.

